
Benchmarking a Memetic Algorithm for

Ordering Microarray Data

P. Moscato, A. Mendes, R. Berretta

Newcastle Bioinformatics Initiative
School of Electrical Engineering and Computer Science

Faculty of Engineering and Built Environment
The University of Newcastle

Callaghan, NSW, 2308, Australia

Preprint submitted to Elsevier Science 10 April 2006

vkw237
Text Box



Abstract

This work introduces a new algorithm for “gene ordering”. Given a matrix of gene
expression data values, the task is to find a permutation of the gene names list such
that genes with similar expression patterns should be relatively close in the permuta-
tion. The algorithm is based on a combined approach that integrates a constructive
heuristic with evolutionary and Tabu Search techniques in a single methodology.
To evaluate the benefits of this method, we compared our results with the current
outputs provided by several widely used algorithms in Functional Genomics. We
also compared the results with our own hierarchical clustering method when used
in isolation. We show that the use of images, corrupted with known levels of noise,
helps to illustrate some aspects of the performance of the algorithms and provide a
complementary benchmark for the analysis. The use of these images, with known
high-quality solutions, facilitates in some cases the assessment of the methods and
helps the software development, validation and reproducibility of results. We also
propose two quantitative measures of performance for gene ordering. Using these
measures, we make a comparison with probably the most used algorithm (due to
Eisen and collaborators, PNAS 1998) using a microarray dataset available on the
public domain (the complete yeast cell cycle dataset).

Key words:
Memetic Algorithms, Tabu Search, Gene Ordering, Clustering, Microarray

1 Introduction

Microarrays are undoubtedly one of the most exciting technological develop-
ments of the last decade (Gershon, 2002). The possibility to simultaneously
measure the activity of the whole genome allows the creation of new meth-
ods to uncover large interacting biological systems. Using microarrays, sci-
entists have now a tool to globally monitor the cell cycle and its regulatory
mechanisms (Spellman et al., 1998). This raises hopes for a reliable molec-
ular classification of cancers (Golub et al., 1999; Berretta et al., 2005) and
for predicting the evolution of the disease from primary tumors (van’t Veer
et al., 2002; Moscato et al., 2005a,b). Microarrays may enable the prediction of
cancer outcomes in which morphological classification is unreliable (Pomeroy
et al., 2002). This small list of applications is illustrative of the promising as-
pects of this new technology which has certainly attracted a large number of

Email address:
{Pablo.Moscato,Alexandre.Mendes,Regina.Berretta}@newcastle.edu.au (P.
Moscato, A. Mendes, R. Berretta).

2



scientists to investigate its strengths and weaknesses. A PubMed search with
the word “microarray” shows that more than 14,000 articles appeared since
its introduction.

In spite of its clear promises, some biologists are still doubtful about some of
the findings obtained with this technology. The reason is the high variability
of individual measurements which in turn may bias the data analysis. As a
consequence, algorithm design for the analysis of microarray data should be
made considering that it must be robust to the currently inevitable variability
expected on its individual measurements.

In this paper, we analyze a problem that can generically be labelled as “gene
ordering”. More concretely, we are addressing the basic problem of visualizing
in two-dimensions a large matrix of gene expression information. In some way,
we are responding to the need of several biologists who are unsatisfied with the
outputs of current commercial and public domain packages. These packages
provide interesting and sometimes statistically sound clustering results (for
instance k-means, hierarchical clustering and others (Eisen et al., 1998; Fasulo,
1999)), but they do not explicitly optimize their output in the way we do in this
contribution. In some cases, closely similar gene expression patterns appear
in the final display several thousand genes apart. This is also the case for
entire clusters, as we will illustrate with both images and microarray datasets.
In addition, one of the main objectives is to benchmark our results and to
introduce some instances of the basic problem that would allow to study the
robustness to the presence of errors in the measurements. This controlled
experimentation allowed us to provide a metaheuristic method which is not
sensitive to high levels of noise and highly varying individual measurements.

It is interesting to note that many clustering methods are basically some form
of greedy algorithm, thus they can be trapped in suboptimal solutions of the
objective function that they are implicitly or explicitly optimizing. Overcom-
ing the limitations of these methods comes at a cost, and certainly it requires
larger computer runs. A good example of an alternative method recently pro-
posed was to use a Memetic Algorithm with a k-means agglomerative proce-
dure as local search (Merz, 2003). In this work, we also present a Memetic
Algorithm (MA) that uses a series of features that makes the search more ef-
fective. Our method can be seen as complementary to Merz’s approach (Merz,
2003), since the main objective here is to provide an ordering of the genes,
and not a clustering. However, we also introduce a novel hierarchical cluster-
ing algorithm to give an initial solution for our MA to speed-up the search.
The main contributions in terms of memetic algorithm design are the use of a
Tabu Search for local optimization and the definition of evolutionary operators
which take advantage of the problem structure.

Four comparison algorithms are used to evaluate the performance of our MA.

3



The first one is a hierarchical clustering technique described in Section 3. In
fact we use this procedure to initialize one of the solutions in our Memetic
Algorithm. The second algorithm has been implemented in the software pack-
age called CLICK 1 (Sharan and Shamir, 2000). The authors reported better
results in comparison to k-means and other traditional clustering techniques.
Therefore it is worthwhile use CLICK for baseline comparison. The third al-
gorithm is a hierarchical clustering created by the European Bioinformatics
Initiative (EBI) as part of the Expression Profiler software tool 2 . Finally, the
fourth method was proposed by Eisen et al. (1998) 3 , which is a hierarchical
clustering algorithm that also performs the ordering of the genes. These meth-
ods were chosen because of their wide acceptance by other researchers (Bini
et al., 2003; Brazma and Vilo, 2000; Elkon et al., 2003; Wingender et al., 2000;
Shamir and Sharan, 2002; Raffelsberger et al., 2002; Vilo et al., 2003). The
second, third and fourth methods are currently available in the internet for
download or online use.

In addition to the new method proposed, we address the problem of perfor-
mance comparison. This is a critical point, since there is no unique measure
for the solution quality in the ordering problem (Eisen et al., 1998; Tamayo
et al., 1999). In order to evaluate the algorithm, we propose to complement
existing comparison approaches with the use of images. Such images are cor-
rupted by noise and the rows and columns are subsequently permuted at
random, allowing a controlled benchmark to test the robustness of the algo-
rithms. Their characteristics are explained later in Section 5. The algorithms
were also tested on two microarray instances of interest – Fibroblast (Iyer
et al., 1999) and Yeast (Saccharomyces cerevisiae) (Eisen et al., 1998) – with
517 and 6,221 genes, respectively. Our results show that some algorithms seem
to scatter groups of genes that could have been placed relatively closer in the
final image. This, in turn, may indicate that some functional groups may have
a larger number of genes than previously reported, as our results on Yeast
may indicate. This means that entire clusters with similar activity patterns
can be closer in the final layout.

The paper is organized as follows. In Section 2, we describe the gene ordering
problem. Section 3 presents the hierarchical clustering technique implemented
to seed our Memetic Algorithm, described in Section 4. The instances are
described in Section 5 and finally, computational results and conclusions are
presented in Sections 6 and 7, respectively.

1 http://www.cs.tau.ac.il/~rshamir/expander/expander.html
2 http://ep.ebi.ac.uk/EP/EPCLUST/
3 http://rana.lbl.gov/EisenSoftware.htm

4



2 The gene ordering problem

The input of the gene ordering problem under consideration is defined as an
integer matrix G of gene expression values gij where 1 ≤ i ≤ n and 1 ≤ j ≤ m,
such that n is the number of genes, m is the number of experiments/conditions,
and gij represents the expression level of gene i under condition j. Informally,
the task is to find a permutation of the genes’ names π = (π1, π2, ..., πn), such
that genes with similar expression are positioned close to each other in the
sequence.

In order to measure the degree of similarity between two genes we can use the
Euclidean distance or other measures of similarity as those based on a Pearson
correlation. A key point to evaluate the quality of an ordering sequence is
to choose a suitable objective function. Our objective function is a sum of n
partial sums, one for each gene (Cotta et al., 2003). Each partial sum considers
the gene as the center of a “window” and a partial cost calculation considering
the closest genes inside that window is done. The partial cost for a gene l is
calculated as:

min(l+ws,n)∑

i=max(l−ws,1)

(ws − |l − i|+ 1).D[πl, πi] (1)

where the window size is 2ws + 1 (the number of genes involved in each partial
distance calculation) and D[πl, πi] represents the distance between genes πl

and πi. A weight (ws−|l− i|+1) was added to Eq. 1 to give more importance
to the genes that are closer. For example, consider the gene in the position
l = 5 and ws = 2. Then, the partial sum for this gene will be: D[π5, π3] +
2D[π5, π4]+2D[π5, π6]+D[π5, π7]. Note that the window is 5, so, for π5 we are
considering in the sum π3, π4, π6 and π7, but with different weights. Therefore,
the TotalCost is calculated as

TotalCost(π) =
n∑

l=1

min(l+ws,n)∑

i=max(l−ws,1)

(ws − |l − i|+ 1).D[πl, πi] (2)

Concerning the parameter ws, previous tests in Cotta et al. (2003) indicate
that the best results seemed to be obtained when ws = 5% of the number
of genes, and we have also used that value in this contribution. However, in
Section 7, we provide a quantitative analysis of the influence of this parameter.
We also show the characteristics of solutions returned by our MA when this
parameter is modified. We have found that this parameter can be user-defined
and that different choices will give different solutions to the end user.

5



3 The agglomerative hierarchical clustering algorithm

In general, methods for gene ordering use some type of bottom-up agglomera-
tive constructive heuristic. We decided do design an algorithm of that type as
a starting point for the MA. Therefore, the MA will try to improve the solu-
tion obtained by the hierarchical clustering technique after adding its solution
to the initial population.

Hierarchical clustering techniques have been applied successfully for gene clus-
tering in recent years (Eisen et al., 1998; Biedl et al., 2001; Martin et al., 2001).
They are generally very fast and provide reasonable solutions of interest for a
preliminary visualization of the results. However, as greedy procedures, their
performances are not competitive against more sophisticated metaheuristics.

Method hierarchicalClustering
begin

cluster = {1, 2, ..., n}
while(|cluster| > 1)

selectMostSimilar(clusterA,clusterB) ∈ cluster ;
clusterA = joinClusters(clusterA,clusterB);
removeCluster(clusterB);

end
end

Fig. 1. Pseudo-code for the hierarchical clustering technique.

Our hierarchical clustering technique provides the gene ordering and an asso-
ciated hierarchical tree (Figure 1). The algorithm begins with n clusters, each
one containing one gene only. The algorithm then chooses the two clusters
that have the minimum distance between each other. As we are interested in
obtaining a sequence and an associated hierarchical tree, we examine the four 

 
 Step 1 Step 2 Step 3 
 1 2 3 4   1’ 2 4   1’’ 4 

1 --- 2.4 1.7 6.8  1’ --- 3.0 4.4  1’’ --- 5.1 
2 2.4 --- 3.6 6.4  2 3.0 --- 6.4  4 5.1 --- 
3 1.7 3.6 --- 2.0  4 4.4 6.4 ---     
4 6.8 6.4 2.0 ---          
 
Step 1: Join 1 and 3  
 Cluster 1 becomes 1’ = 1+3 
 Recalculate distances: d(1’,2) = [d(1,2)+d(2,3)] / 2 
  d(1’,4) = [d(1,4)+d(3,4)] / 2 
   
Step 2:  Join 1’ and 2 
 Cluster 1’ becomes 1’’ = 1’+2 
 Recalculate distances:  d(1’’,4) = [d(1’,4).2+d(2,4).1] / 3 
 
 
Step 3: Complete the binary tree by joining 1’’ and 4. 
 
 
 

 
1   3 

 
 

 
2   1   3 

 
 
 

2   1   3   4 

Fig. 2. Example of the hierarchical clustering with four genes.

6



possible ways of joining the two clusters by their extreme points. The algo-
rithm joins the clusters by the extremes where the genes have the minimum
distance between them. The distances between the new cluster and the others
will be the average of the original ones, weighted by the number of genes in
each one of them (see example in Figure 2). The method stops when there is
only one cluster, containing all genes. The pseudo-code in Figure 1 describes
the technique. In Figure 2, we show an example with four genes to illustrate
how the algorithm constructs a solution.

4 The memetic algorithm

Memetic Algorithms (Moscato, 1989, 1993; Moscato and Norman, 1992) are
population-based search methods for optimization. They form a type of meta-
heuristic that balances exploration and exploitation well to find high-quality
solutions of the optimization problem at hand. Exploration is the capacity of a
randomized algorithm to sample different areas of the search space, looking for
the most promising regions. Once such regions are detected/selected or ran-
domly sampled, exploitation takes place, trying to find high-quality solutions.
Exploration is obtained by means of the population approach together with
the use of recombination and mutation operators. Exploitation comes with
the use of individual improvement procedures, usually efficient local search
methods (Buriol et al., 2004). In our MA, we have decided to use the Tabu
Search metaheuristic for exploitation. Other forms of individual optimization
methods, like truncated exact algorithms, are also used in MAs (Puchinger
et al., 2005; Klau et al., 2004; Cotta and Troya, 2003).

Figure 3 shows the pseudo-code of the memetic algorithm that we have im-
plemented. The algorithm begins by initializing the population. In the first
generation, all solutions are generated at random with the exception of one,
the solution obtained by the agglomerative hierarchical clustering technique
(described in Section 3). The evolutionary loop follows, new solutions are
created, modified and inserted into the population. After a given number of
generations, we apply different procedures that improve the solutions. Finally,
we restart the population and go back to the evolutionary loop again. We will
now explain each one of the memetic algorithm’s components.

4.1 Population Structure

The use of structured populations, in particular hierarchically structured, im-
proves the performance of evolutionary/memetic algorithms (Moscato and
Norman, 1992; Buriol et al., 2004; Franca et al., 2001; Berretta and Moscato,

7



Method memeticAlgorithm
begin

initializeSolPopulation(pop);
updatePopStructure(pop);
repeat

for i = 1 to numberOfRecombinations do
selectSolutions(solutionA, solutionB) ⊆ pop;
newSolution = recombine(solutionA, solutionB);
newSolution = mutate(newSolution);
insertSolution(newSolution, pop);

end
updatePopStructure(pop);
if (populationHasConverged pop) then

improveSolution(pop);
checkForNewIncumbent(pop);
updatePopStructure(pop);
initializeSolPopulation(pop);

end
until (stopCriterion);

end

Fig. 3. Pseudo-code for the memetic algorithm.

1999) and is fundamental for the recombination phase, where pairs of solu-
tions are selected using information about the positions they occupy in the
population structure.

The population is structured as a ternary tree with 13 agents (Figure 4) which
can be understood as a set of four overlapping sub-populations. Each subpop-
ulation is composed of one leader and three supporters, which are one level
below in the hierarchy. Agent 1, the root of the tree, is the leader of the top
subpopulation and it has agents 2, 3, and 4 as supporters. We note that agent
2 has as supporters agents 5, 6, and 7, and so on. So the agents in the second
level act as leaders and supporters in different subpopulations.

Each agent in the population has two solutions, namely pocket and current.

 
 
 
 
 
 
 
 
 
 
 

Subpopulation 

Leader 

Supporters 

1 

13 12 11 10 9 8 7 6 5 

2 3 4 

Fig. 4. Diagram of the population structure.

8



Whenever within an agent the current solution is better than the pocket,
they are switched. In addition, the leader agent is always better than their
supporters. The procedure updatePopStructure in the pseudo-code enforces
that. These two mechanisms guarantee the flow of the best solutions towards
the agent at the top of the hierarchy.

4.2 Representation

Solutions of the gene ordering problem are represented as in our hierarchi-
cal clustering – a binary tree whose leaves are the genes. Figure 5 shows an
example of a solution with six genes. We have used a preorder traversal of
the associated binary tree to represent the solution. The idea of the preorder
traversal is to have the information of the root followed by the left and the
right subtrees respectively. We used a string of integers to code solutions, where
each gene is identified with a number in the interval [1, n] and internal nodes
of the tree with the value -1 (all internal nodes are indistinguishable). For
instance, in Figure 5, the first ‘-1’ represents the root, the next ‘-1’ represents
the first node on left and finally the ‘4’ represents the first leaf. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1  -1  4  -1  -1  1  6  3  -1  2  5 

5 
2 
3 
6 
1 
4 

Gene ordering 
Binary tree 

Fig. 5. Pre-order traversal representation of a solution.

4.3 Recombination and mutation

Recombination and mutation must be cleverly designed as they have very im-
portant roles in the dynamics of the MA algorithm. Recombination creates
new solutions from solutions already visited by combining characteristics of
them. On the other hand, mutation helps to explore from an individual solu-
tion, allowing that new characteristics can be incorporated in the population.

The recombination algorithm receives as input two solutions based on their
position in the ternary tree. It uses the pocket solution of a leader and
one current solution randomly selected from its supporters, following similar
guidelines of previous implementations that have the same approach (Buriol
et al., 2004; Franca et al., 2001; Berretta and Rodrigues, 2004). It then selects

9



a subtree from the first solution, lists all the genes inside it and removes them
from the second solution, as no duplicated genes are allowed. Next, we have
the completion phase, where the selected subtree is inserted into a random
position of the second solution. The subtree can be inserted both in the right
or in the left ramification. In Figure 6, these two possibilities are described.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1  -1  4  -1  -1  1  6  3  -1  2  5 

5 
2 
3 
6 
1 
4 

   Solution A 

-1  -1  -1  2  6  -1  4  -1  3  1  5 

Solution B 
5 
1 
3 
4 
6 
2 

Sub tree  

       Solution B after removal of genes 

  -1  6  -1  2  5 

5 
2 
6 

 Insertion position 

-1  6  -1  2  -1  -1  4  -1  3  1  5 

5 
1 
3 
4 
2 
6 

Left insertion 

5 
1 
3 
4 
2 
6 

-1  6  -1  -1  2  -1  4  -1  3  1  5 

Right insertion 

Fig. 6. Example of a subtree-based recombination. A subtree of solution B is selected
and inserted into solution A, in the left or in the right part of the ramification.
All choices – subtree selection, insertion position and left/right insertion – are at
random.

The mutation is based on a randomized sequence flip. A subtree is selected
uniformly at random and the entire sequence of genes belonging to it is flipped.
This mutation preserves the gene grouping inside the subtree and thus creates
a relatively minor perturbation. The tree structure is also flipped, to keep
consistency with the sequence reversal. After recombination and mutation,
the new solution will replace the current solution in the supporter agent that
participated in the recombination.

4.4 Improvement Procedures

We implemented three different procedures to improve the solutions. They are
all based on local search, but in two of them we use Tabu Search. We will start
by describing the first two Tabu Search improvement procedures.

Tabu Search (TS) (Glover and Laguna, 1997) is a metaheuristic with sev-
eral successful implementations tackling hard combinatorial problems. Its key
strategy is to guide a local search procedure using adaptive memory to pre-
vent reaching solutions previously visited and consequently, to explore new
solutions avoiding local optimality (Glover and Laguna, 1997). The use of TS
inside the local search and as a diversification mechanism in Memetic Algo-
rithms has been tried before with very excellent results in several problem
domains (Moscato, 1993; Berretta and Moscato, 1999).

10



A Tabu-based local search starts with a single solution s. This initial solution
is iteratively replaced by another, say s′, obtained from a set N(s), which
represents the solutions that are neighbors of s. N(s) is composed of all so-
lutions obtainable from s by some perturbation or movement. TS changes
the neighborhood size by classifying certain moves as forbidden or tabu. This
mechanism is called adaptive memory and keeps track of solution attributes
that have changed during the recent past. The use of memory prevents cycling,
i.e., the indefinite execution of the same sequence of moves, and directs the
search to unexplored regions. It is also possible to add an aspiration criterion
which removes the tabu condition of a move if it is considered attractive at
that moment of the search.

In our first procedure, tabuSearchSwap (Figure 7), a move is defined by
swapping the positions of the genes. First, the procedure chooses at random a
position i. Next, the method sequentially selects a position j, belonging to the
interval [i−w, i+w], where w is a parameter to be chosen. This interval aims
to reduce the neighborhood, since it becomes prohibitively time-consuming to
test all possible swaps when the number of the genes is large. A swap move is
confirmed if it improves the solution and both i and j are not tabu. If such move
does not exist for any j, we perform the move that least worsens the solution.
Anytime a move occurs, i and j become tabu for a number of iterations.
Figure 7 shows the pseudo-code for the tabuSearchSwap procedure, where
f(s) represents the objective function of a solution s.

Method tabuSearchSwap(initialSolution)
begin

s = initialSolution;
repeat

select(i) ∈ {1, ..., n};
J = {i− w, ..., i + w};
while(J 6= ∅ or noMovementAccepted)

select(j) ∈ J ; J=J - {j};
s’ = swap(i,j );
if ((f(s’) < f(s) and isNotTabu(i,j )) or aspirationCriteria(i,j ))

s = s’ ; makeTabu(i,j );
updateIncumbent();

end
end
if (noMovementAccepted)

select(j’) ∈ {i− w, ..., i + w};
s = swap(i,j ’); makeTabu(i,j’ );

end
until (stopCriterion);

end

Fig. 7. Pseudo-code of the swap-based tabu search.

11



Method tabuSearchTree(initialSolution)
begin

s = initialSolution;
repeat

numTries = 0; W = ∅;
while (numTries < maxTriesWithoutImprovement)

numTries++;
select(i) ∈ Nodes (set of nodes from the tree);
s’ = flipTree(i);
if ((f(s’) < f(s) and isNotTabu(i)) or aspirationCriteria(i))

s = s’ ; numTries = 0; makeTabu(i);
updateIncumbent();

else W = W + {i};
end
select(i) ∈ W ;
s’ = flipTree(i); makeTabu(i);

until (stopCriterion);
end

Fig. 8. Pseudo-code of the tree-flip-based tabu search.

In the second procedure, called tabuSearchTree (Figure 8), a movement is
defined by flipping a subtree. The procedure starts choosing at random a node
from the tree. If flipping the elements of this tree improves the solution the
flip is performed and the node becomes tabu. After some – namely 5% the
number of genes – attempts without success, the procedure selects the least
worse move from a set W and the node becomes tabu. This set starts empty
and each time a flip is tested and it is not done, the move is stored in W .

In both procedures (tabuSearchSwap and tabuSearchTree) the aspiration
criteria is the following: a tabu move is considered not tabu if the solution
reached by this move is better than the incumbent. The tabu tenure – the
number of moves the variable remains tabu – was determined after prelimi-
nary trial-and-error runs on different types of instances of several sizes, and
we finally adopted a value proportional to the number of genes. In the imple-
mentation, the tabu tenure is a random value lower than 5% of the number of
genes. Since the TS acts as a complementary technique to the MA, we have
restricted the number of iterations in which we run the TS, thus balancing
the fraction of CPU time dedicated to it. The number of iterations was set
at ten times the number of genes. This value allows the TS to reach a local
minimum, select a series of tabu movements and reach other local minima.

The third local search, called moveBlocks, aims at approximating groups of
genes (blocks) which may be far apart in the current sequence order. Intu-
itively, a block begins (or ends) every time two consecutive genes have very
different expression profiles (see Figure 9). The algorithm searches the k most
different pairs of adjacent genes in the solution and consider them as block

12



frontiers. As there is no direct way to predict how many groups of genes
could be useful to move, we vary this parameter k between 3 and 50, in-
creasing/decreasing it by one, every time the local search procedure is called.
Figure 9 illustrates a typical Lenna solution in a case where such groups can
be easily spotted.

Fig. 9. A local search algorithm is used to move “blocks” which are identified as
consecutive pairs of highly dissimilar expression patterns. The figure illustrates a
situation in which five blocks are clear and an ad hoc local search method is highly
beneficial.

After the local search identifies the blocks’ frontiers, it iteratively performs a
series of trial movements – inversions, insertions and swaps – always aiming to
find a solution with less discontinuities. A pseudo-code is shown in Figure 10.

Method moveBlocks(initialSolution)
begin

s = initialSolution;
repeat

findBlocks(s,k);
s = invertBlocks(s);
s = insertBlocks(s);
s = swapBlocks(s);

until (noImprovement);
end

Fig. 10. Pseudo-code of the block-based local search.

13



5 The sets of instances

A common difficulty of gene ordering and clustering algorithms applied to
microarrays is how to compare two solutions. In general, they are evaluated by
visual inspection which, in our experience, is highly subject to misjudgments.

We can make an analogy between ordering genes in microarray data and the
problem of “unscrambling” the rows of an image when the image has all its
rows permuted at random. This means that, it would be possible to use images
as benchmark instances to evaluate gene ordering and clustering algorithms.
The advantage of using images for performance evaluation is that it becomes
easier to understand the quality of the results. With these ideas in mind, we
introduced five sets of instances. The first three use images and the other two
use microarray data. All sets are described next.

5.1 ‘Lenna’-based instances

Since the beginning of the 70’s, many computer-vision articles adopted this
image for evaluation purposes of algorithms and it is now considered one of
the most famous pictures in Image Processing 4 . The original Lenna image
has 512x512 pixels, but since most microarrays experiments involve a larger
number of genes, we replicated it 10 times, creating a ‘multiplied’ Lenna image
with 5,120x512 pixels. In the original image each row is very similar to its
neighbors and there are no repeated row patterns. Thus, an objective function
that aims to group genes with similar gene expression profiles should consider
the original order of the lines as optimal or very near to the desired optimal
order. When we scramble the rows of the ‘multiplied’ image and then try to
order them again, we expect to get back the original one, but as the image was
replicated 10 times, the optimal ordering would resemble a ‘stretched’ Lenna
– or a “Modigliani Lenna” (recalling the Italian artist’s elongated portraits).

To simulate the level of error of microarray experiments (Kothapalli et al.,
2002), we added noise to the image in two different ways. The pictures are gray-
scaled, and their pixels’ intensity varies between 0 and 255 (see Figure 11).
The first type of noise, namely Type I, modifies each image pixel by a random
value lower than x% of the maximum pixel intensity - i.e. x% of 255. The
second noise, namely Type II, assigns a random value to x% of the picture’s
pixels. Both types of error were applied together at 10%, 20%, 30% and 40%
to create the first four test images.

4 http://www.public.asu.edu/∼akandan/tech/lena/
http://www.cs.cmu.edu/∼chuck/lennapg/lenna.shtml

14



Most microarray datasets contain no more than a few dozen experiments,
due to their high costs, and we are aware that with the current costs of this
technology the use of an instance with 512 columns would reflect a rather
unrealistic situation. However datasets of this sample size already exist and
may become common place in the near future (Gunderson et al., 2004). In
order to discuss current, more typical instances of this problem, in the next four
instances we selected 100 adjacent columns from the original image, centered
in the region of the eyes, a band that holds the majority of the conspicuous
characteristics of the image. As expected, this second set of instances became
more challenging for all the algorithms. Overall, the results got worse for the

Fig. 11. Instances derived from the Lenna 512x512-pixel image. On the left, the
multiplied Lenna which is ten copies of the original image. On the top are the
expected optimal solution, striped Lenna with Type I+II noise and only noise Type
I, respectively. On the bottom, four Whole Lenna with Type I+II noise. This allows
a controlled benchmark, as all algorithms will then receive a dataset on which all
the rows have been permuted at random.

15



same values of Type I+II noise levels. This indicates that it is relevant to
study the performance of the methods in detail for lower noise levels (5%,
10%, 15% and 20%).

The third set of instances is composed of the same 100 adjacent columns of the
second set, but contains only noise Type I. The motivation is that the impact
of Type II noise in the performance of the algorithms can be minimized by a
posterior re-analysis of any suspicious measurement by a repeated experiment.
In Figure 11 we present some instances derived from the ‘multiplied’ Lenna
image.

5.2 The Fibroblast and Yeast instances

The biological instances were used to check the performance of the algorithms
on real microarray data with similar numbers of genes. The first instance
(fibroblast) has 517 genes corresponding to the human fibroblast response to
serum (Iyer et al., 1999). This instance was chosen because it is on the same
range of the original Lenna image, the red/green clusters in the resulting
images are easier to perceive, we have worked with it in the past and it seems
to be a suitable data set for visual comparison.

The second biological instance derives from gene expression studies of the
yeast cell-cycle (Saccharomyces cerevisiae) with 6,221 genes, firstly introduced
by Eisen et al. (1998) and still considered a standard benchmark. This dataset
is available for download from numerous websites 5 , and was also used previ-
ously (Wu et al., 2002; Teichmann and Babu, 2002).

6 Comparison methods

We compared our results with three other methods. The first one is the CLICK
algorithm (Sharan and Shamir, 2000). It was referenced many times since its
publication and it is widely recognized as a high-performance method (Elkon
et al., 2003; Wingender et al., 2000; Shamir and Sharan, 2002). We will briefly
describe it. CLICK initially calculates a similarity matrix between genes.
From this similarity matrix, CLICK computes a weighted similarity graph
G = (V, E,w), where w reflects the probability of two genes to be in the same
cluster. Then, it recursively solves a series of MIN CUT problems producing a
set of subgraphs, each one representing a cluster. At the end, two steps, namely

5 Please refer to the web sites:
http://www.yeastgenome.org/
http://cellcycle-www.stanford.edu/

16



adoption and merging steps, decide merging clusters until a given threshold is
reached.

The second algorithm is a hierarchical clustering from the European Bioin-
formatics Initiative (EBI) software named Expression Profiler. We refer the
reader to a recently published book for more details about it (Vilo et al.,
2003). The software is also widely referenced in the literature (Bini et al., 2003;
Brazma and Vilo, 2000; Raffelsberger et al., 2002). The Expression Profiler
allows you to choose from many types of algorithms, as well as from different
distance metrics. For the tests, we chose the hierarchical clustering with an
average weighted group linkage option and Euclidean distances squared , which
seemed the combination that helps to obtain the best results.

The third algorithm was introduced by Eisen et al. (1998). This is one of the
most used algorithm in Bioinformatics and the original publication has been
already cited more than 2,800 times. For the comparison, we used the solutions
with the best hierarchical clustering, obtained using centered correlation and
average linkage clustering. The software is available for download from the
EisenLab Homepage 6 – Gene Cluster V2.11.

7 Computational results

In this section we present the results obtained by the algorithms on the five sets
of instances described in Section 5. All tests (except the hierarchical clustering
from EBI, which was done online using their server) were performed on a
Pentium IV 3.0 GHz HT computer, with 1 Gb of RAM, and using Java 1.4.2
JDK.

In Sections 7.1, 7.2 and 7.3, we compare our methods against CLICK and
EBI hierarchical clustering. Then, in Section 7.4, we extend the comparison
to Eisen’s hierarchical clustering, where we also use a quantitative measure
for the quality of the solutions found. We highlight some interesting results on
the identification of some functional groups in Yeast. CPU times are reported
in Table 1.

7.1 Results for the Whole Lenna image

In Figure 12 we show the solutions found for the Whole Lenna images with
noises Type I+II at levels ranging from 0% to 40%. A few considerations
must be taken into account. The CLICK algorithm focuses only in finding

6 http://rana.lbl.gov/EisenSoftware.htm

17



Table 1
CPU times for the methods
Instance Number of Agglom. Memetic Agglom. CLICK

genes/exp. Clustering Tabu Clustering EBI

Whole Lenna 5,120/512 25 sec 120 min 60 sec 3 min
Striped Lenna 5,120/100 25 sec 120 min 60 sec 3 min

Fibroblast 517/18 1 sec 3 min 1 sec 25 sec
Yeast 6,221/80 38 sec 150 min 80 sec 4 min

good clusters, and lacks a within-cluster ordering procedure which may be
an interesting add-on for that approach. Such lack of ordering is troublesome
when it comes to analyze individual genes (as similar genes could be scattered
between clusters). As the largest clusters obtained by CLICK contained sev-
eral hundred genes, such analysis is complicated, even considering that they
have similar expression profiles. An embedded hierarchical clustering could
create a better within-cluster ordering and CLICK’s solution would be easier
to analyze.

The EBI hierarchical clustering had a good performance. It found most of
the characteristics, but completely missed the overall distribution of patterns.
Its performance seems to be independent of the noise level. A strong point
is that the algorithm is very fast and thus can be used as a starting point
for a more powerful metaheuristic, like the one being proposed in this paper.
Our agglomerative hierarchical clustering also obtained good results with up
to 30% noise and was the fastest method. However, we must emphasize that
since the EBI algorithm runs directly on a dedicated web site, we do not have
information about processor speeds, whether any parallel processing technique
is being employed, or any other details that might influence the observed CPU
time. Finally, the MA algorithm returned the best results of them all, restoring
near-optimal solutions with up to 40% noise, at the expense of a longer CPU
time.

7.2 Results for the Striped Lenna image

In Figure 13 we show the solutions for the Striped Lenna images with noise
Type I+II at levels up to 20%. These images were more difficult to order than
the previous ones.

The Striped Lenna results exhibited the same pattern of the Whole Lenna.
The CLICK algorithm obtained good clusters, but without any intra-cluster
optimization, it is difficult to accurately evaluate the results. Although the two

18



Fig. 12. Whole Lenna instances results for the four algorithms. Noise level varies
from 0% to 40%.

hierarchical clustering algorithms’ performances got worse, the EBI algorithm
obtained slightly better solutions. The MA recovered the image with no noise,
and with 5% noise the results were also very impressive. For higher noise
levels the performance of MA rapidly deteriorated, but it still obtained the
best results.

19



In Figure 14 we show the solutions found for the Striped Lenna images with
only noise Type I from 0% to 20%. The images are easier to order compared to
the ones in Figure 13. This test also illustrates how noise Type II is potentially
very harmful for some algorithms.

7.3 Results for the Fibroblast and Yeast instances

The fibroblast and the yeast instances were used to test the algorithms with
real microarray datasets. Due to the expression profiles and smaller number
of genes in the fibroblast instance, it is easier to make conclusions based on
visual assessment only. On the other hand, with the yeast dataset it is very
hard to tell which method is the best. We will give a quantitative analysis for
the latter. In Figure 15, we show the orderings we obtained.

Although the images in Figure 15 are very similar, at first glance the CLICK
appears to be the best method because it seems to have better defined groups.
We will show that this is not the case. If we take the MA and the CLICK
solutions for the fibroblast instance (see Figure 16), the upper half of both
clusterings roughly contains the same genes in different order. Next to the MA
solution (center-left), we highlighted its upper 280 genes, in the same order. If
we randomize the positions of these 280 genes we get a new configuration that
visually resembles CLICK’s ordering (center-right). What this means is that,

Fig. 13. Striped Lenna instances results for the four algorithms. Noise Type I+II
level varies from 0% to 20%.

20



Fig. 14. Striped Lenna instances results for the four algorithms. Noise Type I level
varies from 0% to 20%.

sometimes, a completely random ordering seems, visually, correlated enough,
and visual judgements alone could be potentially misleading. The good visual
results obtained by CLICK – with blocks apparently well defined – might
result in part from the lack of order within each cluster. This is an example
of how visual evaluation for microarray orderings is a common trend that
provides a weak criterion. It also shows the need of quantitative measures for
comparison of algorithms and the use of controlled experiments, such as those
we propose here, to evaluate the performance of algorithms.

7.4 Comparison between the memetic algorithm and Eisen’s hierarchical clus-
tering

In this section, we complement the previously proposed visual evaluation of
different ordering methods by using a quantifier based on the correlation be-
tween genes. Additionally, we use the concept of cliques – from Graph Theory –
as an indicator of groups of highly-correlated genes. Considering an undirected
graph G = (V,E), a clique G′ = (V ′, E ′) is a subgraph of G, such that for
every two vertices in V ′, there exists an edge ei ∈ E ′ connecting the two
vertices. If we consider that nodes are genes and an edge between two nodes
exists only when the correlation is higher than a given threshold, a clique will
indicate a highly-correlated group of genes, which might belong to the same
pathway/functional group.

21



Fig. 15. Results for the fibroblast and yeast (Saccharomyces cerevisiae) instances,
with 517 and 6221 genes, respectively.

In order to compare different solutions we used the average correlation of
gene expression patterns at distance d in the ordering < ρ > (d), which is the
average Pearson correlation between the genes that are at distance d from
each other in the sequence and it is calculated as:

< ρ > (d) =
1

n− d

n−d∑

i=1

ρi,i+d. (3)

22



Fig. 16. A comparison of CLICK and MA results on the fibroblast instance. CLICK
has apparently discovered four major clusters. However, if we randomly order the
subsequence given by the MA for the genes of the major cluster, we can see that it
is visually similar to the result given by CLICK. This shows that the MA is able to
see a rich substructure within that cluster.

In this section we used the same yeast instance described in Section 5.2 in-
troduced by Eisen et al. (1998). In preliminary tests, Eisen’s algorithm gave
the best results on this instance, so we selected it to make a fair comparison.
In order to facilitate reproducibility of our claims by other groups, we filtered
out all genes with missing values. That eliminates the need for imputation of
missing values and still leaves 3,222 genes with measurements across all the
80 experiments.

In Figures 17 and 18, we show the average correlation profile of the solu-
tions obtained by the memetic algorithm and Eisen’s hierarchical cluster-
ing. The two curves plotted in Figure 17 represent the solutions obtained
by our memetic algorithm with two configurations of window size (ws = 1
and ws = 5). The thicker line corresponds to the solution found by Eisen’s
hierarchical clustering. It is clear that Eisen’s method shows a good average
correlation for genes that are closer in the sequence, with a relatively soft decay
with the increase of the distance. The memetic algorithm, on the other hand,
shows profiles with high correlations for genes that are closer in the sequence,
but its decay is faster. In Figure 18, the MA’s window sizes are larger (1% and
5% of the number of genes). The correlation profiles are quite different from
the previous two, with a much slower decay of the curves.

These results show that when we choose small values for the parameter ws, we
obtain smaller groups of correlated genes, but the correlation among them is

23



high. On the other hand, higher values for ws are more suitable to find larger
functional groups or to get a “whole” picture view of the microarray, as in the
Lenna image. However, the correlation among the genes in these large groups
is lower.

After counting the number of cliques in the four solutions returned by the
memetic algorithm, we found that the configuration ws = 5 was the best for
this instance, independent of the correlation threshold. It also consistently
surpassed the solution found with Eisen’s method in number of cliques (see
Figure 19). This indicates a better ordering, with similar genes layout closer
than in Eisen’s solution. This will be reflected next, when we check the func-
tional groups associated to some of these cliques.

There are many functional groups easily identifiable in both solutions, but pro-
tein synthesis is by far the largest and easiest to distinguish. In Figure 20, all
genes have a very similar activation profile and the two groups contain almost
the same genes. Even though the memetic algorithm was able to put three
more genes that are related to protein synthesis, we can say that both groups
have overall the same quality. The differences start to appear when we move
to the smaller, more difficult to find, functional groups. In Figure 21, we show
some smaller functional groups found by both methods. They were protein

Correlation profiles (Smaller window sizes)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Distance between genes in the sequence

A
ve

ra
ge

 c
or

re
la

tio
n

Eisen's Hier. Clust.

MA (Ws = 1)

MA (Ws = 5)

Fig. 17. Comparison between the memetic algorithm results with ws = 1 and ws = 5
and Eisen’s hierarchical clustering algorithm for the Yeast instance. The lines shown
are the average correlation of gene expression patterns at distance d in the permu-
tation ordering of the solutions found by the three methods (as a function of d). All
of them have the same pattern; genes that are closer in the sequence have a higher
correlation than genes that are farther apart. With a small window the average
correlations between genes up to five positions apart are higher than in Eisen’s so-
lution, making small windows better suited to find small groups of highly-correlated
genes.

24



degradation, ATP synthesis, oxidative phosphorylation, TCA cycle and sterol
metabolism. The memetic algorithm managed to put together the ATP syn-
thesis, oxidative phosphorylation and TCA cycle functional groups, totalling
15 genes in this group. Eisen’s solution divided these genes and put them well
apart in the sequence. It is known that ATP synthesis, oxidative phosphory-
lation and TCA cycle are all related to the respiration process. The MA has
put in this group YKR046C, of yet unknown function but for which protein-
protein interactions seem to indicate a role in ATP/ADP exchange (Samanta
and Liang, 2003; Athenstaedt et al., 1999; Brown et al., 2000). The fact that
the memetic algorithm managed to put these groups together seems to re-
flect their link. For sterol metabolism, the difference was in the number of
elements; seven for the memetic algorithm and four for Eisen’s. Another TCA
cycle functional group was also found by both methods; the memetic one with
six genes and Eisen’s with only three. It appears that depending on the ad-
justment of the window size, the memetic algorithm can be very successful in
joining groups that are commonly put apart and at the same time continue
finding larger functional groups.

These tests indicate that the memetic approach yields a flexibility that other
methods lack. If the goal is to get an overall picture of the microarray, one
can set the memetic algorithm’s window size to a large value. If the aim is to
find an order that puts together highly correlated groups, we can reduce the
window size and be confident to find such groups.

Correlation profiles  (Larger window sizes)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Distance between genes in the sequence

A
ve

ra
ge

 c
or

re
la

tio
n

Eisen's Hier. Clust.

MA (Ws = 1%)

MA (Ws = 5%)

Fig. 18. Comparison between the memetic algorithm results with ws = 1% and
ws = 5% and Eisen’s hierarchical clustering algorithm for the Yeast instance. The
average correlation of gene expression patterns at distance d in the permutation
ordering < ρ > (d) for the MAs have a very slow decay pattern, meaning that genes
that are well-apart in the sequence still have a good correlation. These window sizes
are better suited to find larger groups of correlated genes, or to order groups of
smaller, highly-correlated clusters.

25



Comparison of the number of cliques

0

100

200

300

400

500

600

0.65 0.70 0.75 0.80 0.85 0.90

Similarity threshold

N
um

be
r 

of
 C

liq
ue

s

Eisen's Hier. Clust.

MA (Ws = 5)

Fig. 19. Total number of cliques that have their genes ordered consecutively in the
final display by the MA (ws = 5) and Eisen’s hierarchical clustering.

8 Conclusion

This paper presented a new Memetic Algorithm for the Gene Ordering prob-
lem. The technique belongs to the Evolutionary Algorithms metaheuristics,
and has an embedded Tabu Search optimization procedure. Another important
contribution was the introduction of a controlled experimentation to compare
different techniques. The quality assessment of a given solution is a critical
point, as there is no unique measure for that. Several large images were used
as if they were microarray data, and the goal was to arrange their rows, which
played the role of genes. In order to emulate the outcome of microarray exper-
iments, different levels of noise were added to the originally error-free image.
Our work is a first step towards a more systematic analysis of the impact of
microarray data errors in the output and robustness of algorithms.

The CLICK algorithm and the EBI Expression Profiler hierarchical cluster-
ing were used as comparison methods. Although more time consuming, the
Memetic Algorithm was able to outperform both of them in most instances.
The Memetic Algorithm has also consistently improved the initial solutions
provided by our agglomerative hierarchical clustering technique. After vali-
dating the new approach with the images, we tested it with two microarray
data sets. The first is derived from Fibroblast cells, and has 517 genes. The
other is the well-known Yeast complete microarray, composed of 6,221 genes.
Results were displayed as a series of grayscale images, which show the order-
ings for each algorithm and the high quality results of the Memetic Algorithm
proposed in this paper.

The last part of the paper draws a comparison between the memetic algorithm

26



Memetic Algorithm (Ws = 5) 

 
 
 
 
 
YKR094C PROTEIN SYNTHESIS   
YJL189W PROTEIN SYNTHESIS   
YJL191W PROTEIN SYNTHESIS   
YCR031C PROTEIN SYNTHESIS   
YDR418W PROTEIN SYNTHESIS   
YIL052C PROTEIN SYNTHESIS   
YPL143W PROTEIN SYNTHESIS   
YOR369C PROTEIN SYNTHESIS   
YJR145C PROTEIN SYNTHESIS   
YMR242C PROTEIN SYNTHESIS   
YJR123W PROTEIN SYNTHESIS   
YNL178W PROTEIN SYNTHESIS   
YNL301C PROTEIN SYNTHESIS   
YPR043W PROTEIN SYNTHESIS   
YHR141C PROTEIN SYNTHESIS   
YKR057W PROTEIN SYNTHESIS   
YIL069C PROTEIN SYNTHESIS   
YER074W PROTEIN SYNTHESIS   
YDL082W PROTEIN SYNTHESIS   
YPL198W PROTEIN SYNTHESIS   
YLR062C UNKNOWN  
YBR181C PROTEIN SYNTHESIS   
YHR203C PROTEIN SYNTHESIS   
YOL121C PROTEIN SYNTHESIS   
YJL177W PROTEIN SYNTHESIS   
YGR214W PROTEIN SYNTHESIS   
YFR031BC UNKNOWN  
YIL133C PROTEIN SYNTHESIS   
YIL018W PROTEIN SYNTHESIS   
YKL006W PROTEIN SYNTHESIS   
YOL040C PROTEIN SYNTHESIS   
YLL045C PROTEIN SYNTHESIS   
YLR076C UNKNOWN  
YNL067W PROTEIN SYNTHESIS   
YLR325C PROTEIN SYNTHESIS   
YHL015W PROTEIN SYNTHESIS   
YLR441C PROTEIN SYNTHESIS   
YML063W PROTEIN SYNTHESIS   
YGR148C PROTEIN SYNTHESIS   
YGR118W PROTEIN SYNTHESIS   
YPR102C PROTEIN SYNTHESIS   
YGL189C PROTEIN SYNTHESIS   
YGL031C PROTEIN SYNTHESIS   
YGR085C PROTEIN SYNTHESIS   
YLR075W PROTEIN SYNTHESIS   
YGL103W PROTEIN SYNTHESIS   
YGL123W PROTEIN SYNTHESIS   
YGL147C PROTEIN SYNTHESIS   
YGL102C UNKNOWN  
YBR084C-A UNKNOWN  
YBL027W PROTEIN SYNTHESIS   
YLR448W PROTEIN SYNTHESIS   
YPL079W PROTEIN SYNTHESIS   
YLR344W PROTEIN SYNTHESIS   
YPL081W PROTEIN SYNTHESIS   
YLR185W PROTEIN SYNTHESIS   
YDR064W PROTEIN SYNTHESIS   
YPL131W PROTEIN SYNTHESIS   
YOR133W PROTEIN SYNTHESIS   
YPR074C PENTOSE PHOSPHATE CYCLE  
YNL209W TRANSLATION  
YKL056C UNKNOWN  
YDR012W PROTEIN SYNTHESIS   
YOL039W PROTEIN SYNTHESIS   
YPL220W PROTEIN SYNTHESIS   
YLR340W PROTEIN SYNTHESIS   
YLR339C UNKNOWN  
YGL135W PROTEIN SYNTHESIS   
YDR382W PROTEIN SYNTHESIS   
YLR029C PROTEIN SYNTHESIS   
YLR167W PROTEIN SYNTHESIS   
YLR388W PROTEIN SYNTHESIS   
YGR027C PROTEIN SYNTHESIS   
YIL148W PROTEIN SYNTHESIS   
YNL255C UNKNOWN  
YKL156W PROTEIN SYNTHESIS   
YPR132W PROTEIN SYNTHESIS   
YJL136C PROTEIN SYNTHESIS   
YDL130W PROTEIN SYNTHESIS   
YNL069C PROTEIN SYNTHESIS   
YPL142C UNKNOWN  
YDR500C PROTEIN SYNTHESIS   
YLR048W PROTEIN SYNTHESIS   
YJL190C PROTEIN SYNTHESIS   
YML106W PYRIMIDINE BIOSYNTHESIS  
YKR059W PROTEIN SYNTHESIS   
YJL138C PROTEIN SYNTHESIS   
YPR080W PROTEIN SYNTHESIS   
YKL081W PROTEIN SYNTHESIS  
 
 
 
 
 
 
 

Eisen’s Hierarchical Clustering 
YDR025W PROTEIN SYNTHESIS   
YJL138C PROTEIN SYNTHESIS   
YKR059W PROTEIN SYNTHESIS   
YML106W PYRIMIDINE BIOSYNTHESIS  
YJL190C PROTEIN SYNTHESIS   
YKL156W PROTEIN SYNTHESIS   
YJL136C PROTEIN SYNTHESIS   
YOR369C PROTEIN SYNTHESIS   
YCR031C PROTEIN SYNTHESIS   
YPR074C PENTOSE PHOSPHATE CYCLE 
YOR133W PROTEIN SYNTHESIS   
YDR500C PROTEIN SYNTHESIS   
YLR388W PROTEIN SYNTHESIS   
YPL142C UNKNOWN  
YGL030W PROTEIN SYNTHESIS   
YBL027W PROTEIN SYNTHESIS   
YBR084C-A UNKNOWN  
YLR448W PROTEIN SYNTHESIS   
YPL143W PROTEIN SYNTHESIS   
YGL102C UNKNOWN  
YGR027C PROTEIN SYNTHESIS   
YPR132W PROTEIN SYNTHESIS   
YJR145C PROTEIN SYNTHESIS   
YLR185W PROTEIN SYNTHESIS   
YLR344W PROTEIN SYNTHESIS   
YPL079W PROTEIN SYNTHESIS   
YPL081W PROTEIN SYNTHESIS   
YNL067W PROTEIN SYNTHESIS   
YGL103W PROTEIN SYNTHESIS   
YGL123W PROTEIN SYNTHESIS   
YGL147C PROTEIN SYNTHESIS   
YHR141C PROTEIN SYNTHESIS   
YIL069C PROTEIN SYNTHESIS   
YDR418W PROTEIN SYNTHESIS   
YIL052C PROTEIN SYNTHESIS   
YNL069C PROTEIN SYNTHESIS   
YPL220W PROTEIN SYNTHESIS   
YLR340W PROTEIN SYNTHESIS   
YLR339C UNKNOWN  
YGL135W PROTEIN SYNTHESIS   
YNL301C PROTEIN SYNTHESIS   
YLR048W PROTEIN SYNTHESIS   
YDL082W PROTEIN SYNTHESIS   
YKR057W PROTEIN SYNTHESIS   
YPR043W PROTEIN SYNTHESIS   
YNL178W PROTEIN SYNTHESIS   
YLR062C UNKNOWN  
YBR181C PROTEIN SYNTHESIS   
YFR031BC UNKNOWN  
YIL018W PROTEIN SYNTHESIS   
YKL006W PROTEIN SYNTHESIS   
YIL133C PROTEIN SYNTHESIS   
YHL015W PROTEIN SYNTHESIS   
YLR076C UNKNOWN  
YLL045C PROTEIN SYNTHESIS   
YOL040C PROTEIN SYNTHESIS   
YGR118W PROTEIN SYNTHESIS   
YGR148C PROTEIN SYNTHESIS   
YGR085C PROTEIN SYNTHESIS   
YGL031C PROTEIN SYNTHESIS   
YLR075W PROTEIN SYNTHESIS   
YPR102C PROTEIN SYNTHESIS   
YML063W PROTEIN SYNTHESIS   
YLR441C PROTEIN SYNTHESIS   
YOL121C PROTEIN SYNTHESIS   
YJL177W PROTEIN SYNTHESIS   
YHR203C PROTEIN SYNTHESIS   
YPL198W PROTEIN SYNTHESIS   
YER074W PROTEIN SYNTHESIS   
YGR214W PROTEIN SYNTHESIS   
YLR325C PROTEIN SYNTHESIS   
YOL039W PROTEIN SYNTHESIS   
YKL056C UNKNOWN  
YNL209W TRANSLATION  
YMR242C PROTEIN SYNTHESIS   
YJR123W PROTEIN SYNTHESIS   
YPL131W PROTEIN SYNTHESIS   
YGL189C PROTEIN SYNTHESIS   
YAL038W GLYCOLYSIS  
YDR012W PROTEIN SYNTHESIS   
YDR064W PROTEIN SYNTHESIS   
YJL191W PROTEIN SYNTHESIS   
YIL148W PROTEIN SYNTHESIS   
YNL255C UNKNOWN  
YNL119W UNKNOWN  
YLR061W PROTEIN SYNTHESIS   
YLR167W PROTEIN SYNTHESIS   
YDL130W PROTEIN SYNTHESIS   
 

Fig. 20. Protein synthesis functional group found by the memetic algorithm and
Eisen’s hierarchical clustering. The memetic algorithm solution contains 89 genes
and 77 of them are protein synthesis-related. Eisen’s solution contains one gene less
and 74 of them are protein synthesis-related. Even though larger groups are easy
to identify and both methods perform almost the same on them, there generally is
a slight difference in favor of the memetic algorithm.

and Eisen’s hierarchical clustering, a well-known approach extensively cited
in the Bioinformatics and Molecular Biology literature. The conclusion is that
the memetic algorithm brings an extra degree of flexibility that other current
methods for display lack, allowing the user to adjust it to his/her own needs –
a more broad-aimed ordering, where the user can visualize the ‘whole picture’
of the microarray at hand, or a more detail-aimed ordering, where the smaller
functional groups are easier to identify. The ability of the memetic algorithm
to find highly-correlated groups of genes, usually related to functional groups
or genetic pathways, surpasses the abilities of previous methods.

27



Memetic Algorithm (Ws = 5) Eisen’s Hierarchical Clustering 
 
 
 
 
YKL016C ATP SYNTHESIS 
YGL191W OXIDATIVE PHOSPHORYLATION 
YLR038C OXIDATIVE PHOSPHORYLATION 
YDR377W ATP SYNTHESIS 
YJR121W ATP SYNTHESIS 
YBL099W ATP SYNTHESIS 
YKR046C UNKNOWN 
YLR395C OXIDATIVE PHOSPHORYLATION 
YGL187C OXIDATIVE PHOSPHORYLATION 
YGR182C UNKNOWN 
YHR051W OXIDATIVE PHOSPHORYLATION 
YDL067C OXIDATIVE PHOSPHORYLATION 
YOR065W OXIDATIVE PHOSPHORYLATION 
YKL085W TCA CYCLE 
YDR178W TCA CYCLE 
YLL041C TCA CYCLE 
YJR048W OXIDATIVE PHOSPHORYLATION 
 
 
 
YLR056W STEROL METABOLISM  
YML123C TRANSPORT  
YGR175C STEROL METABOLISM  
YMR015C STEROL METABOLISM  
YMR202W STEROL METABOLISM  
YML126C STEROL METABOLISM  
YKL080W VACUOLAR ACIDIFICATION  
YGL001C STEROL METABOLISM  
YML008C STEROL METABOLISM 
 
 
 
YDL066W TCA CYCLE 
YOR135C UNKNOWN 
YNL037C TCA CYCLE 
YPL262W TCA CYCLE 
YML131W UNKNOWN 
YJR095W TRANSPORT 
YLR174W TCA CYCLE 
YNL117W GLYOXYLATE CYCLE 
YOL126C TCA CYCLE 
YGR067C UNKNOWN 
YBR218C TCA CYCLE 
 
 
 
YCL057W PROTEIN DEGRADATION  
YLR387C PROTEIN DEGRADATION  
YDR092W PROTEIN DEGRADATION  
YOR117W PROTEIN DEGRADATION  
YBR151W UNKNOWN  
YHR116W UNKNOWN 
YJR117W PROTEIN PROCESSING  
YPL007C UNKNOWN  
YJL053W VACUOLAR PROTEIN TARGETING  
YJL036W PROTEIN DEGRADATION  
YER012W PROTEIN DEGRADATION  
YPR108W PROTEIN DEGRADATION  
YOL038W PROTEIN DEGRADATION  
YFR004W TRANSCRIPTION  
YGR135W PROTEIN DEGRADATION  
YGR253C PROTEIN DEGRADATION  
YOR259C PROTEIN DEGRADATION  
YMR314W PROTEIN DEGRADATION  
YIL075C TRNA PROCESSING  
YOR157C PROTEIN DEGRADATION  
YGL048C PROTEIN DEGRADATION  
YPR103W PROTEIN DEGRADATION  
YJL001W PROTEIN DEGRADATION  
YDL100C UNKNOWN  
YOL049W GLUTATHIONE BIOSYNTHESIS  
YHR200W PROTEIN DEGRADATION  
YLR361C UNKNOWN  
YGL174W UNKNOWN  
YOL088C UNKNOWN  
YLR114C UNKNOWN  
YOL013C PROTEIN DEGRADATION  

YGL187C OXIDATIVE PHOSPHORYLATION 
YHR051W OXIDATIVE PHOSPHORYLATION 
YLR038C OXIDATIVE PHOSPHORYLATION 
YLR395C OXIDATIVE PHOSPHORYLATION 
YGL191W OXIDATIVE PHOSPHORYLATION 
YKL016C ATP SYNTHESIS 
YBL099W ATP SYNTHESIS 
YJR121W ATP SYNTHESIS 
 
 
 
YFL018C TCA CYCLE 
YJR048W OXIDATIVE PHOSPHORYLATION 
YOR065W OXIDATIVE PHOSPHORYLATION 
YLL041C TCA CYCLE 
YDR178W TCA CYCLE 
YKL085W TCA CYCLE  
 
 
 
YMR015C STEROL METABOLISM 
YLR056W STEROL METABOLISM 
YGR175C STEROL METABOLISM 
YML123C TRANSPORT 
YMR202W STEROL METABOLISM 
 
 
 
 
 
 
 
YPL262W TCA CYCLE 
YNL037C TCA CYCLE 
YOR135C UNKNOWN 
YGR279C UNKNOWN 
YFL039C CYTOSKELETON 
YML048W GLUCOSE REPRESSION 
YDL174C PYRUVATE METABOLISM 
YER057C HEAT SHOCK RESPONSE 
YDL066W TCA CYCLE 
 
 
 
 
 
YML092C PROTEIN DEGRADATION  
YDL097C PROTEIN DEGRADATION  
YGL011C PROTEIN DEGRADATION  
YJR117W PROTEIN PROCESSING  
YJL036W PROTEIN DEGRADATION  
YJL053W VACUOLAR PROTEIN TARGETING  
YOL038W PROTEIN DEGRADATION  
YIL075C TRNA PROCESSING  
YPR108W PROTEIN DEGRADATION  
YGL048C PROTEIN DEGRADATION  
YOR157C PROTEIN DEGRADATION  
YJL001W PROTEIN DEGRADATION  
YPR103W PROTEIN DEGRADATION  
YGR253C PROTEIN DEGRADATION  
YGR135W PROTEIN DEGRADATION  
YMR314W PROTEIN DEGRADATION  
YOR259C PROTEIN DEGRADATION  
YHR200W PROTEIN DEGRADATION  
YOL049W GLUTATHIONE BIOSYNTHESIS  
YOR117W PROTEIN DEGRADATION  
YER012W PROTEIN DEGRADATION  
YGR223C UNKNOWN  
YER059W CELL CYCLE  
YOR362C PROTEIN DEGRADATION 

Fig. 21. Smaller functional groups found by the memetic algorithm and Eisen’s
hierarchical clustering. The first group is ATP synthesis + oxidative phosphoryla-
tion + TCA cycle, which was separated into two groups well-apart with Eisen’s
method. For the sterol metabolism and TCA cycle groups, the memetic algorithm
found larger clusters. Finally, both methods grouped the same number of protein
degradation genes, 18 in total.

Acknowledgements

This work was funded by a Strategic Initiative Fund (SIF) from The Univer-
sity of Newcastle. The authors would also like to thank C. Cotta for several
useful discussions.

References

K. Athenstaedt, D. Zweytick, A. Jandrositz, S. D. Kohlwein, and G. Daum.
Identification and characterization of major lipid particle proteins of the
yeast textitSaccharomyces cerevisiae. J. Bacteriol., 181(20):6441–6448,
1999.

R. Berretta, A. Mendes, and P. Moscato. Integer programming models and
algorithms for molecular classification of cancer from microarray data. In

28



Proceedings of the 28th Australasian Computer Science Conference, pages
361–370, 2005.

R. Berretta and P. Moscato. The number partitioning problem: An open
challenge for evolutionary computation? In D. Corne and M. Dorigo, editors,
New Ideas in Optimization, pages 261–278. McGraw-Hill, 1999.

R. Berretta and L. Rodrigues. A memetic algorithm for multi-stage capaci-
tated lot-sizing problems. International Journal of Production Economics,
87(1):67–81, 2004.

T. Biedl, B. Brejova, E. Demaine, A. Hamel, and T. Vinar. Optimal ar-
rangement of leaves in the tree representing hierarchical clustering of gene
expression data. Technical Report 2001-14, University of Waterloo, Canada,
2001.

L. Bini, S. Pacini, S. Liberatori, S. Valensin, M. Pellegrini, R. Raggiaschi,
V. Pallini, and C. Baldari. Extensive temporally regulated reorganization
of the lipid raft proteome following t-cell antigen receptor triggering. Bio-
chemical Journal, 369:301–309, 2003.

A. Brazma and J. Vilo. Gene expression data analysis. Federation of European
Biochemical Societies (FEBS) Letters, 480:17–24, 2000.

M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares,
and D. Haussler. Knowledge-based analysis of microarray gene expression
data by using support vector machines. Proceedings of the Natural Academy
of Sciences, U.S.A, 97(1):262–267, 2000.

L. Buriol, P. Franca, and P. Moscato. A new memetic algorithm for the
asymmetric traveling salesman problem. Journal of Heuristics, 10(5):483–
506, 2004.

C. Cotta, A. Mendes, V. Garcia, P. França, and P. Moscato. Applying memetic
algorithms to the analysis of microarray data. In G. R. Raidl, J.-A. Meyer,
M. Middendorf, S. Cagnoni, J. J. R. Cardalda, D. Corne, J. Gottlieb,
A. Guillot, E. Hart, C. G. Johnson, and E. Marchiori, editors, EvoWork-
shops, volume 2611 of Lecture Notes in Computer Science, pages 22–32.
Springer, 2003. ISBN 3-540-00976-0.

C. Cotta and J. Troya. Embedding branch and bound within evolutionary
algorithms. Applied Intelligence, 18:137–153, 2003.

M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. In Proceedings of the National
Academy of Sciences of the USA 95, pages 14863–14868, 1998.

R. Elkon, C. Linhart, R. Sharan, R. Shamir, and Y. Shiloh. Genome-wide in
silico identification of transcriptional regulators controlling the cell cycle in
human cells. Genome Research, 13(5):773–780, 2003.

D. Fasulo. An analysis of recent work on clustering algorithms. Technical
Report UW-CSEO1-03-02, University of Washington, 1999.

P. Franca, A. Mendes, and P. Moscato. A memetic algorithm for the total tar-
diness single machine scheduling problem. European Journal of Operational
Research, 132(1):224–242, 2001.

D. Gershon. Microarray technology - an array of opportunities. Nature, 416

29



(6883):885, 2002.
F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,

Massachusetts, 1997.
T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,

H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander.
Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science, 286:531–537, 1999.

K. Gunderson, S. Kruglyak, M. Graige, F. Garcia, B. Kermani, C. Zhao,
D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski,
R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard,
and M. Chee. Decoding randomly ordered DNA arrays. Genome Research,
14:870–877, 2004.

V. Iyer et al. The transcriptional program in the response of human fibroblasts
to serum. Science, 283:83–87, 1999.

G. W. Klau, I. Ljubic, A. Moser, P. Mutzel, P. Neuner, U. P. G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming
to solve the prize-collecting steiner tree problem. In Genetic and Evolu-
tionary Computation - GECCO, volume 3102, pages 1304–1315. Springer-
Verlag, 2004.

R. Kothapalli, S. Yoder, S. Mane, and T. Loughran. Microarray results: How
accurate are they? BMC Bioinformatics, 3(22):1–10, 2002.

K. Martin, E. Graner, Y. Li, L. Pricea, B. Kritzman, M. Fourniera, E. Rhei,
and A. Pardee. High-sensitivity array analysis of gene expression for the
early detection of disseminated breast tumor cells in peripheral blood. In
Proceedings of the National Academy of Sciences of the USA 98, pages 2646–
2651, 2001.

P. Merz. Analysis of gene expression profiles: an application of memetic al-
gorithms to the minimum sum-of-squares clustering problem. BioSystems,
72:99–109, 2003.

P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Technical Report Caltech Con-
current Computation Program, Report. 826, California Institute of Technol-
ogy, Pasadena, California, USA, 1989.

P. Moscato. An introduction to population approaches for optimization and
hierarchical objective functions: a discussion on the role of tabu search.
Annals of Operations Research, 41:85–121, 1993.

P. Moscato, R. Berretta, M. Hourani, A. Mendes, and C. Cotta. Genes re-
lated with alzheimer’s disease: A comparison of evolutionary search, sta-
tistical and integer programming approaches. In F. Rothlauf, J. Branke,
S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori,
J. Romero, G. D. Smith, and G. Squillero, editors, EvoWorkshops, volume
3449 of Lecture Notes in Computer Science, pages 84–94. Springer, 2005a.
ISBN 3-540-25396-3.

P. Moscato, R. Berretta, and A. Mendes. A new memetic algorithm for order-
ing datasets: Applications in microarray analysis. In to appear in Proceed-

30



ings of the sixth Metaheuristics International Conference, 2005b.
P. Moscato and M. G. Norman. A ’memetic’ approach for the traveling sales-

man problem implementation of a computational ecology for combinatorial
optimization on message-passing systems. In M. Valero, E. Onate, M. Jane,
J. L. Larriba, and B. Suarez, editors, Parallel Computing and Transputer
Applications, pages 177–186. IOS Press, Amsterdam, 1992.

S. Pomeroy, P. Tamayo, M. Gaasenbeek, L. Sturla, M. Angelo, M. McLaughlin,
J. Kim, L. Goumnerova, P. Black, C. Lau, J. Allen, D. Zagzag, J. Olson,
T. Curran, C. Wetmore, J. Biegel, T. Poggio, S. Mukherjee, R. Rifkin,
A. Califano, G. Stolovitzky, D. Louis, J. Mesirov, E. Lander, and T. Golub.
Prediction of central nervous system embryonal tumour outcome based on
gene expression. Nature, 415(6870):436–442, 2002.

J. Puchinger, G. Raidl, and R. M. Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. In
Proceedings of the sixth Metaheuristics International Conference, 2005.

W. Raffelsberger, D. Dembl, M. Neubauer, M. Gottardis, and H. Gronemeyer.
Quality indicators increase the reliability of microarray data. Genomics, 80
(4):385–394, 2002.

M. Samanta and S. Liang. Predicting protein functions from redundancies in
large-scale protein interaction networks. Proceedings of the Natural Academy
of Sciences, U.S.A, 100(22):12579–12583, 2003.

R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expres-
sion data. In T. Jiang, T. Smith, Y. Xu, and M. Zhang, editors, Current
Topics in Computational Biology, pages 269–299. MIT Press, 2002.

R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to
gene expression analysis. In Proceedings of 8th International Conference on
Intelligent Systems for Molecular Biology (ISMB’00), pages 307–316, 2000.

P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown,
D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hy-
bridization. Mol. Biol. Cell, 9:3273–3297, 1998.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E. Lander, and T. Golub. Interpreting patterns of gene expression with self-
organizing maps: methods and application to hematopoietic differentiation.
In Proceedings of the National Academy of Sciences of the USA 96, pages
2907–2912, 1999.

S. Teichmann and M. Babu. Conservation of gene co-regulation in prokaryotes
and eukaryotes. TRENDS in Biotechnology, 20(10):407–410, 2002.

L. van’t Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao, H. Peterse,
K. van der Kooy, M. Marton, A. Witteveen, G. Schreiber, R. Kerkhoven,
C. Roberts, P. Linsley, R. Bernards, and S.H.Friend. Gene expression pro-
filing predicts clinical outcome of breast cancer. Nature, 415(6871):530–536,
2002.

J. Vilo, M. Kapushesky, P. Kemmeren, U. Sarkans, and A. Brazma. Expression
profiler. In G. Parmigiani, E. Garrett, R. Irizarry, and S. Zeger, editors, The

31



Analysis of Gene Expression Data: Methods and Software. Springer-Verlag,
2003.

E. Wingender, X. Chen, R. Hehl, H. Karas, I. Liebich, V. Matys, T. Meinhardt,
M. Pruss, I. Reuter, and F. Schacherer. Transfac: an integrated system for
gene expression regulation. Nucleic Acids Research, 28:316–319, 2000.

L. Wu, T. Hughes, A. Davierwala, M. Robinson, R. Stoughton, and
S. Altschuler. Large-scale prediction of saccharomyces cerevisiae gene func-
tion using overlapping transcriptional clusters. Nature Genetics, 31(3):255–
265, 2002.

32




